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Livermore computer scientists advance machine learning technology for      scientific applications.

MORE than 
just a buzzword, machine 
learning (ML) has become part of 
everyday life. Social media platforms 
recognize faces in photos. Online 
stores recommend products related to 
shoppers’ browsing and purchasing 
behavior. Smartphones offer word-
completion suggestions based on users’ 
texting habits. Search engines refine 
results after learning from users’ past 
actions. Only with ML technology can 
self-driving cars adapt to moving traffic.

ML uses computers to learn from 
data and make predictions about the 
environment. As the world generates 
more data, interpretation becomes more 
difficult. Lawrence Livermore computer 
scientist Peer-Timo Bremer explains, 
“Humans reach a limit where they cannot 
perform the analysis anymore.”  
A smart machine—one that adapts to new 

information on 
the fly—can speed up 
processing and analysis times and 
improve its accuracy in identification and 
prediction tasks. Although commercial 
and consumer applications of ML are 
numerous, Livermore’s mission space 
also presents ample opportunities for 
exploiting ML tools, often requiring 
new development beyond standard 
applications. (See box p. 7.) 

Indeed, Livermore faces unique 
challenges in advancing the ML arena. 
Bremer points out, “Commercial 
companies do not solve scientific 
problems, just as national laboratories do 
not optimize selections of movie reviews. 
We therefore build on commercial tools 
to create the techniques we need to 

analyze data from 
experiments, simulations, 
and other sources.” ML algorithms 
must be scaled for high-performance 
computing (HPC) machines, and different 
types and varying volumes of data 
complicate matters. For example, one 
project may have access to thousands of 
patient health records, whereas another 
may only have data from a handful of 
National Ignition Facility (NIF) shots. 
Bremer continues, “A team may have to 
sort through genetic sequences, protein 
structures, energy spectra, x-ray images, 
or combinations of these.” Other issues 
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with scientific 
data include noise 
and imbalance—such as a handful 
of successful drugs versus millions of 
ineffective compounds—which will bias 
traditional data-driven models.

Along with Bremer, computer scientists 
Rushil Anirudh, Harsh Bhatia, Bhavya 
Kailkhura, Hyojin Kim, Shusen Liu, 
and Jayaraman Thiagarajan are go-to 
ML experts. They take a bidirectional 

approach, both 
advancing underlying 
theory and solving real-world 
problems. The algorithms involved are 
run on several on-site HPC resources, 
including Sierra, the Laboratory’s newest 
and fastest supercomputer.
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Perfecting the Process 
Scientific analysis involving ML 

generally follows a cycle in which 
sample design guides data collection. 
Data are processed with ML algorithms 
and their associated frameworks—
collectively, the ML model—which 
are designed to learn from data inputs. 
Results are scrutinized for errors and 
unknown variables, providing statistical 
quantification of uncertainties and 
informing subsequent sampling. All 
stages of the cycle are interpreted with 
visualization tools. The ML model is first 
trained on smaller, representative data 
sets to refine this process. 

ML algorithms serve various purposes. 
For instance, neural networks (NNs) 
connect artificial neural units to observe 
and make inferences from data. Deep 
learning is another category of algorithms 
in which hierarchical layers of NNs 

adaptively learn from data to discover new 
features. In addition, ML methods respond 
differently depending on data properties. 
In supervised ML, the system analyzes 
labeled or classified data. In unsupervised 
ML, data are not labeled or classified, so 
the computer learns to identify common 
traits. Other types of learning are self-
supervised—labeled and unlabeled data 
combined—and reinforcement—based on 
prior performance.

Livermore researchers actively 
develop new ways of configuring and 
deploying such algorithms. The common 
thread is improving ML’s accuracy 
and efficiency for the benefit of the 
entire scientific analysis workflow. 
Accordingly, Thiagarajan explains, “All 
application domains face the same issue, 
and the conversation must start with the 
kind of data needed. Scientific analysis 
is driven by data.”

Designing the Data Sample
Sample design is the key to quality 

results, especially when a project 
faces scope or resource constraints. 
Kailkhura notes, “Sampling requires 
configuring experiments and simulations 
to generate the most informative data. 
ML algorithms will not offer new 
insight if samples contain inaccurate or 
incomplete information.” For instance, if 
a team with limited computing resources 
wants to run simulations of NIF shots, 
beforehand they must choose, as the 
focus of their investigation, the most 
valuable parameters. “These are the 
parameters,” Kailkhura explains, “that 
will acquire the most information given 
a number of simulation runs, such as 
implosion dimensions.”

Kailkhura looks at sample design 
abstractly, seeking mathematical 
solutions for sampling optimization 
problems. A high-dimensional (HD) 
parameter space is needed to represent 
the key factors that affect the results of 
a complex experiment or simulation. 
The higher the dimensionality, the more 
data are required to sample the space. 
Kailkhura describes these spaces from a 
theoretical perspective, citing the widely 
known sphere-packing problem—finding 
the ideal arrangement of oranges in a 
crate for n dimensions. In this problem, 
oranges represent data points in a 
sample, and the crate is the domain of 
interest, as in an inertial confinement 
fusion (ICF) implosion. The way the 
oranges are packed signifies the pattern 
of selected data points. Optimized sphere 
packing, or space filling, enables ML 
models to process data more quickly by 
minimizing the number of steps to reach 
a solution. Moreover, the models can 
provide insights into data not acquired 
yet, hence ML’s predictive capabilities. 
Kailkhura seeks to cover as much of the 
space as possible while also obtaining 
the greatest information from the data 
sample. He states, “We strive for the 
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In scientific analysis using ML, sample design informs data collection in simulations and 

experiments. The ML model processes the data and generates predictions, which are then 

evaluated for quality. Results from both training and actual data are fed back into the sample 

design to refine the process. Visualizations are used for interpretation.
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right balance between coverage from 
uniform sampling and maximized 
information from random sampling. 
The optimal sample design will have 
some combination of uniformness and 
randomness.”

Kailkhura collaborates with Bremer 
and Thiagarajan on a project, funded 
by the Laboratory Directed Research 
and Development Program, aimed at 
exploring spectral sampling of HD 
spaces. In this context, spectral refers 
to the frequency of change among data 
points—a necessary consideration, the 
team argues, in addition to the data’s 
spatial arrangement. Spectral analysis 
can enable better understanding of 
space-filling sample designs by finding 
a balance between uniform and random 
coverage. The project’s goals are to 
determine optimal sampling patterns 
and to create ML algorithms that can 
generate those samples in any HD space. 

The project team uses a combination 
of exploration and exploitation 
techniques—sampling input variables 
independently of the output while 
using knowledge of the output to guide 
sample design, respectively. Project 
leader Thiagarajan notes, “We start 
the optimization process with blind 
exploration of data points, then switch 
to exploitation to search the regions of 
highest interest.” This hybrid approach 
achieves better results than traditional 
methods by weighing both high- and 
low-frequency information—information 
respectively about more and less 
frequent change. The range of analyzable 
frequencies is maximized, providing 
statistically higher confidence in 
results. In recently published tests using 
data from NIF hot spot simulations, 
Livermore’s spectral-sampling technique 
doubles the accuracy to significantly 
outperform other sample designs. 
Ultimately, optimized data inputs 
improve the ability of ML models to 
make useful predictions.

Machine Learning

Essential Expertise
Examples abound of Lawrence Livermore’s growing demand for machine learning (ML) 

to solve challenges in scientific data analysis. One research team created a toolkit that 
trains massive neural networks on image data. (See S&TR, June 2016, pp. 16–19.) Another 
project focuses on time-varying data, which reveal patterns in time. In this scenario, new 
ML algorithms progressively use existing observation-based data to forecast future events. 
For example, clinical decision making could be enhanced by ML analysis of trends in 
patient data.

One National Ignition Facility project leverages ML to analyze the largest-ever data 
set from inertial confinement fusion (ICF) implosions. (See S&TR, September 2018, 
pp. 16–19.) Another group is developing an innovative cognitive computing platform 
that combines ML with graph analytics and other areas of artificial intelligence to 
improve ICF simulation efficiency.

ML is also speeding up data analysis and prediction in three-dimensional printing and 
making multimodal data analysis easier in nuclear nonproliferation. Materials scientists 
use ML and big data analytics to accelerate materials synthesis and optimization. 
(See S&TR, July/August 2017, pp. 16–19.) ML technology helps Livermore scientists 
catalog and interpret objects orbiting Earth and process huge volumes of data captured 
by ground- and space-based telescopes. Livermore has also partnered with several 
institutions to accelerate drug discovery and development by integrating high-
performance computing, ML, and other data science technologies. Computer scientist 
Rushil Anirudh notes, “The possibilities of ML are exciting. Whenever we reach a 
roadblock, we find ways to break through with ML.”

(left) Random sampling of image reconstruction data finds only one significant pattern, as shown 

by concentric rings (upper left corner). (right) The team’s spectral-sampling method reduces 

noise and other artifacts to reveal additional zones of interest in the data. 
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Trusting the Model
Model interpretability is another 

methodological ML pursuit at the 
Laboratory. “Human nature requires 
justification,” states Liu. “We want to 
know which symptoms correlate to 
a particular diagnosis. We want to 
know how a conclusion was reached.” 
Justification means providing rationale 
for how ML models work and the results 
they predict so stakeholders will trust 
both. Liu continues, “Interpretability is a 
necessary part of explaining or modifying 
an ML model, especially if the application 
is as important as NIF and not simply 
images of cats and dogs.” Interpretability 
involves confronting tricky questions. 
For example, Bremer asks, “If a model 
is trained on a certain data set, how does 
one know it is not biased toward those 
data’s properties?” An ML model might 
advise a bank that residents of a certain 
neighborhood are unsuitable candidates 
for a mortgage loan. If an applicant’s 
address is the only criterion affecting 
loan approvals, then the model ignores 
other relevant information such as credit 
score or loan repayment history. Avoiding 
bias means understanding how the model 
arrives at a prediction and finding where 
bias might originate.

ML models do not have to specify a 
path to a solution. Consequently, Bremer 
cautions, “We may not understand how 

the model performed its analysis, which 
undermines confidence in the solution, 
especially for nonexperts.” The stakes are 
even higher for large-scale models with 
thousands or millions of parameters. The 
quest for useful ML interpretation comes 
with many challenges, such as the absence 
of a universally agreed-upon explanation. 
To control error and variability in new 
ML approaches, Liu advocates for 
transparency so that the model is not 
merely a “black box.”

Liu studies ML models through 
exploratory analysis. He states, 
“Conventional interpretation techniques 
study the model as an invariant object, 
where its behaviors are recorded and 
analyzed in an offline fashion.” Instead, 
Liu recommends perturbation as one 
interpretation tool. Analogous to adjusting 
a radio’s volume by turning a knob, 
researchers can perturb different variables 
and observe the behavior of others.  
For instance, masking a localized part of  
an image can affect the prediction of what 
the image contains. By dividing an image 
into a pixel grid and shifting the mask 
around the grid, researchers can calculate 
each pixel’s importance in identifying the 
desired object. Liu explains, “This approach 
investigates relationships between inputs 
and outputs to determine which properties 
of the input contribute to the prediction.”

Optimization of latent spaces presents 
another step toward interpretability. Latent 
space lies between ML processing’s 
encoding and decoding stages and captures 
variations and other key underlying 
information in a compressed representation 
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Perturbation is one method of exploring an ML model’s interpretability in which researchers 

adjust—in a manner akin to turning a dial—different factors and observe the effects. 
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A 10-dimensional latent space of inertial confinement fusion (ICF) simulation data is reduced to 

the 2-dimensional visualization shown, in which the axes and scale no longer have explicit physical 

meaning. (insets) Different areas of the latent space capture various shapes of ICF images, providing 

insight into how the ML model interprets variations in high-dimensional (HD) data.
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of the data. Unsupervised ML models 
map inputs through layers of NNs into 
the latent space, where data are reduced 
into lower dimensional representations, 
enabling the model to identify hidden 
features beyond those observed. “In many 
real-world scenarios, HD data can be 
compressed into spaces with as few as 
two to four dimensions,” notes Kailkhura, 
whose work in sample design optimizes 
an understanding of these latent spaces. 
Knowing more about the features of 
these latent spaces makes results more 
interpretable.

“Latent spaces are compact and 
descriptive but typically not transparent or 
intuitive,” says Bremer. Therefore, Liu and 
colleagues apply nonlinear dimensionality 
reduction functions to latent spaces and use 
visualizations to discover feature variations 
captured and distributed throughout these 
spaces. By comparing visual encodings of 
the HD space, researchers can determine 
how many dimensions yield the most 
valuable information. In one study of ICF 
simulations, the team compared image 
patterns in 10- and 16-dimensional latent 
spaces and found that the latter did not 
fully use all dimensions. Liu summarizes, 
“By reducing the dimensions when 
exploring the latent space, we can directly 
assess the information captured by that 
space and explain the differences between 
simulations.” 

For many scientists who rely on 
ML, seeing is believing. Topological 
data analysis is another valuable tool 
for understanding the structure of HD 
spaces, and the resulting visualizations 
help Livermore researchers explain and 
verify ML models. “Topology produces 
abstract structures that generalize to high 
dimensions,” notes Bremer. Laboratory 
researchers have released open-source 
software that render data relationships 
through mountains, valleys, and other 
maplike contours. Bremer continues, 
“We can extract HD properties and 
show them as a low-dimensional terrain. 

Visualizations allow us to find patterns 
or anomalies that other statistical 
methods may not find, so we can evaluate 
information that would otherwise be 
incomprehensible.”

Case Study: Multiscale Modeling
In 2016, the Department of 

Energy (DOE) and the National Cancer 
Institute launched a multiyear partnership 
to advance cancer research using modern 
HPC resources. Livermore plays a central 
role in the program’s three pilot projects. 
(See S&TR, October/November 2016,  
pp. 4–11.) One project, nicknamed Pilot 2, 
brings together three DOE laboratories—
Lawrence Livermore, Los Alamos, and 
Oak Ridge—and Frederick National 
Laboratory for Cancer Research to explain 
interactions between cell membranes and 
specific proteins that induce many forms 
of cancer. (Pilots 1 and 3 focus on drug 
discovery and patient health records.)

To guide multiscale simulations of 
these interactions, Pilot 2 collaborators—
including Bhatia and Bremer—develop 
ML approaches aiming to understand 
both the mechanism of a protein called 
RAS and the signaling chain that causes 

another protein, RAF, to interact with 
RAS. “ML is at the very center of this 
project, integrating different areas of 
expertise,” states Bhatia. “We use ML to 
locate phenomena occurring on the cell 
membrane in coarse simulations, which 
we can then investigate more closely 
with higher fidelity simulations.” With 
this computational steering approach, 
researchers guide simulations to gain 
specific insight while maximizing the 
throughput of computational resources.

Understanding protein biology 
requires modeling at different spatial 
and temporal scales—from nano- 
to milliseconds and from nano- to 
micrometers. Bhatia explains, 
“Simulating the underlying phenomena 
with sufficient accuracy at fine scales is 
prohibitively expensive computationally.” 
Therefore, the project’s sophisticated ML 
model is trained on coarse macroscale 
simulations before resources are spent 
on more detailed microscale molecular 
dynamics (MD) simulations. He 
continues, “Coarse simulations give us 
a reasonable approximation of results. 
The ML model identifies important areas, 
such as a small location where a protein 
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                                           These topological visualizations uncovered new information from ICF 

                                 simulations, an example of HD information. (top) Initially, the team identified  

                         two peaks where implosion yield is maximized. (bottom) Resampling with  

                 40,000 data points around these peaks revealed a new peak that would have been  

       ignored with traditional statistical sampling. This ML analysis was part of a project  

investigating ICF target shape. (See S&TR, September 2018, pp. 16–19.)
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interacts with the cell membrane, where 
we should invest our resources at a higher 
resolution. We want to investigate enough 
regions of interest to make statistical 
claims over a long temporal range 
without running simulations for the entire 
period.” This tactic could cut simulation 
time from months to days.

Computational steering is a sampling 
problem. Accordingly, the approach 
takes advantage of latent spaces. Bhatia 
says, “We have millions of potentially 
interesting data points with nonlinear, 
highly complex relationships. For example, 
consider finding similar-looking houses 
among millions of photos. We could 
not simply compare individual pixels to 
determine similarity.” The team’s ML 
solution includes an autoencoder—a deep 
NN—that reduces the data into a latent 
space. From there, the model chooses the 
features most dissimilar from previous 
iterations and ranks the results according 
to importance—from most to least 
anomalous. Even with compression, a 
million data points could be flagged, which 
is why using latent spaces is key.

In a process called adaptive sampling, 
data generated by macroscale simulations 
inform sampling of the MD simulations—
the latter, in turn, becomes part of the 
feedback loop to update the former. 

Together, autoencoding, adaptive 
sampling, and the in situ feedback cycle 
allow the team to manage over a million 
samples through HD analysis and, 
therefore, run macro simulations with 
the accuracy of MD. “These types of 
simulations are novel, and we are scaling 
the workflow to target a supercomputer 
such as Sierra,” states Bhatia. In 2018, the 
Pilot 2 team reached a major milestone by 
computationally steering such multiscale 
simulations on Sierra.

Case Study: Threat Detection
Three screening scenarios—

medical diagnosis, airport luggage, 
and commercial truck cargo—share 
important characteristics. All require 
expert analysis of image scans, 
and threats are reduced with quick 
identification of suspicious objects. 
Automatically flagging suspicious areas 
in an image saves human operators’ time 
while minimizing errors. For example, 
maximized information from a computed 
tomography scan can help reduce a 
patient’s radiation exposure or improve 
prognosis with early cancer detection. 
In all three scenarios, the goal is higher 
detection rates with fewer false alarms. 

Lung cancer nodules are inconsistent 
in size and shape and may not appear 

clearly in a lung image. A radiologist can 
mark a nodule in an image but cannot be 
expected to label every affected pixel. 
ML algorithms require more specific 
coordinates for nodule location, so the 
model must learn to create detailed labels 
at different stages of analysis. Anirudh 
explains, “We use unsupervised strategies 
to estimate nodule characteristics, such 
as boundaries, in weakly labeled data.” 
Kim adds, “This model will not replace 
radiologists’ expertise but will significantly 
reduce their workloads by filtering out 
images that do not need close review. The 
model can also provide a ‘second opinion’ 
to reduce diagnostic errors.”

Luggage screening technology stands 
to benefit from ML-driven efficiencies in 
image quality, as airport scanners often 
provide sparse views of imaged objects. 
The Livermore team built a system of 
one- and two-dimensional NNs to recover 
limited-angle or partial-view images. 
Mindful of interpretability, they also 
designed a confidence score to gauge 
results reliability. The score is calculated 
from estimates of pixel variabilities within 
the model’s latent space and is correlated 
with reconstruction quality. The team’s 
image reconstruction and segmentation 
techniques have shown higher fidelity to 
ground truth than other methods. 
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An illustration shows how ML is at the center of the Pilot 2 cancer research workflow, connecting coarse macroscale simulations (left) and fine microscale 

molecular dynamics (MD) simulations (right) used to investigate mediation of cancer initiation by the protein RAS. An autoencoder reduces macroscale 

model data into a latent space, where the data are ranked by novelty and importance. MD simulations are reserved for the most important regions, thereby 

conserving computational resources. The result is simulations with macro (long) length and timescales that also provide insights at the microscale.
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At ports of entry, analysts see only a two-
dimensional scan and must decide whether 
cargo contains, for example, nuclear 
materials stashed among a truckload of 
appliances. The cargo’s three-dimensional 
depth cannot be directly observed and so is 
inferred from a sum of the layers in a single 
image. The Livermore team has developed 
a source-separation model that splits a 
single image into multiple images to predict 
distribution of cargo materials. By training 
on probabilistic “clean” data separated 
into layers, this unsupervised ML model 
develops a surrogate for physical materials, 
then applies it to subsequent scans. 
Thiagarajan compares this technique to the 
way the brain identifies merged objects, 
saying, “If I show you separate images of 
a face and a pair of sunglasses, you can 
mentally combine them.” 

In addition, Livermore researchers 
are moving toward what Anirudh calls 
“ML 2.0”—a more robust unsupervised 
model that does not collect data sets for 
every task. For example, Kim explains, 

“Thousands of unlabeled bags are scanned 
daily at airports. When a new object is 
introduced, the scanner needs to detect 
the abnormality for the security officer 
to investigate.” The team is solving 
such inverse problems with adversarial 
NNs, which perform generative and 
discriminative evaluations to reduce errors.

Disruptive Advances
In the quest to understand human 

intelligence, researchers across the 
Laboratory are evolving scientific ML in 
areas such as mathematical neuroscience, 
brain-inspired network architectures, 
representation learning, and multistage 
training algorithms. Thiagarajan says, 
“Combining scientific exploration and 
artificial intelligence opens up exciting 
opportunities for solving real-world 
challenges.”

Livermore’s ML experts agree that 
most research teams at the Laboratory 
will eventually seek ML-driven solutions 
to the challenges they face. In fact, 

many mission-critical programs already 
rely on ML technologies. Kailkhura 
states, “Once you grasp the concepts, 
the applications are numerous.” Bremer 
adds, “Grand challenges in science and 
computing cannot be addressed with 
incremental improvements. Instead, we 
must look for disruptive advances with 
significant technical, programmatic, and 
strategic impact. Livermore is absolutely 
the right place—perhaps one of the only 
places—to do this.”

—Holly Auten
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Bremer (925) 422-7365 (bremer5@llnl.gov).
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(top) Illicit materials inside a vehicle are difficult to discern from this single-view scan. (bottom) The Laboratory’s ML source-separation technique 

divides the image into layers from which the three-dimensional depth of the contents can be discovered.




